About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

DOI: 10.1306/10211313002

Previous HitPorosityNext Hit trends in the Skagerrak Formation, Central Graben, United Kingdom Continental Shelf: The role of compaction and pore pressure history

Neil T. Grant,1 Alexander J. Middleton,2 and Stuart Archer3

1ConocoPhillips (UK) Ltd., Rubislaw House, North Anderson Drive, Aberdeen AB156FZ, United Kingdom; [email protected]
2ConocoPhillips Norske, P.O. Box 3, N-4064, Stavanger, Norway; [email protected]
3ConocoPhillips (UK) Ltd., Rubislaw House, North Anderson Drive, Aberdeen AB156FZ, United Kingdom; Present address: Department of Geology and Petroleum Geology, Kings College, University of Aberdeen, AB34 3UE, United Kingdom; [email protected]

ABSTRACT

This paper describes Previous HitreservoirNext Hit properties in the Triassic Skagerrak Formation in the Central North Sea. This prolific Previous HitsandstoneNext Hit Previous HitreservoirNext Hit often possesses anomalously high Previous HitporosityNext Hit for its depth of burial. Simple statistical analysis of wire-line-log-derived Previous HitporosityNext Hit data is used to derive empirical trends as a function of both depth and vertical effective stress that show variations between neighboring hydrocarbon fields and between different parts of the basin. Previous HitPorosityNext Hit data from the Josephine (J) Ridge (Quadrant 30 of the United Kingdom Continental Shelf [UKCS]) show a marked degradation with depth, but the porosities are significantly higher than in similarly deeply buried areas such as the Puffin high to the west (Quadrant 29) or the Forties–Montrose high to the north (Quadrant 22). To understand the Previous HitporosityNext Hit patterns better the data have been analyzed by plotting against vertical effective stress. This allows a better comparison to be made between fields and wells within the high-pressure–high-temperature (HPHT) realm. High pressure here refers to fluid pressures above 10,000 psi (BLTN13002eq1), whereas high temperatures are above 300°F (149°C). Results show that Previous HitporosityNext Hit and fractional effective Previous HitreservoirNext Hit (the proportion of net Previous HitsandstoneNext Hit with a Previous HitporosityNext Hit greater than a predetermined cutoff) decrease systematically with increasing vertical effective stress. Data from the different J Ridge fields fall on a common compaction trend even though they are derived from structures with marked variations in present-day depth of burial and static formation overpressure. Trends from the other areas of the Central Graben (the Puffin and Forties–Montrose highs) indicate more indurate Previous HitreservoirNext Hit states. The observed Previous HitporosityNext Hit trends are independent of fluid type within the Previous HitreservoirNext Hit and the absolute magnitude of overpressure. The main observed hydrocarbon effect is the result of buoyancy forces. The analysis supports the contention that, after accounting for facies-related grain-size variations, compaction controls average Previous HitreservoirNext Hit properties. Differences in compaction state between areas are postulated to relate primarily to structurally controlled timing of overpressure development relative to burial, and how these affect the resultant vertical effective stress history. Both the Puffin and Forties–Montrose highs are directly attached to the basin margins across stepped faults. These marginal terraces were open to lateral fluid flow for longer probably because across-fault seals were only established late in the burial history when higher temperatures promoted cementation and the destruction of permeability within fault cores. As a result, they developed overpressures in the last 5–10 m.y. or so and are largely normally compacted. The J Ridge horst block is hydrologically more isolated within the basin center by across-fault juxtaposition seals. Here, overpressure development appears to have started earlier, possibly between 50 and 60 Ma, retarding compaction and allowing preservation of higher porosities. Compaction continues to present day driven by the large static vertical effective stress gradients in these deeply buried reservoirs. The observed empirical trends offer a means of Previous HitpredictingNext Hit average Previous HitreservoirTop properties in deep untested exploration targets.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].