About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 102, No. 4 (April 2018), P. 587-612.

Copyright ©2018. The American Association of Petroleum Geologists. All rights reserved.

DOI: 10.1306/0609171616917163

Petroleum system modeling of the East Coast Basin, Hawke Bay, New Zealand

Blair Burgreen-Chan,1 and Stephan A. Graham2

1ConocoPhillips, 600 North Dairy Ashford Rd, Houston, Texas 77009; [email protected]
2Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California 94305; [email protected]

ABSTRACT

This study evaluates the petroleum prospectivity of the East Coast Basin, an element of the Hikurangi convergent margin of New Zealand. The basin tectonic environment changed from a dormant convergent margin to convergent margin around the early Miocene, likely causing a decrease in the basin thermal Previous HitregimeNext Hit. Two end-member paleoheat flow scenarios were used to evaluate thermal maturation of two key source rocks, the Waipawa Black Shale and Whangai Formation, based on calibration to six wells across the basin using vitrinite–inertinite reflectance and fluorescence analysis, as well as Rock-Eval Tmax (the temperature at which the maximum rate of hydrocarbon generation occurs during pyrolysis analysis), thermal alteration index, apatite fission track analysis, and present-day temperatures. This study finds that paleobasal heat flow ranged between 40 and 55 mW/m−2 and decreased to 30 mW/m−2 between 15 and 5 Ma, as bracketed by the two end-member heat flow scenarios. The heat flow scenarios were applied to a palinspastically reconstructed basin and petroleum system model across Hawke Bay. We find that the two distinct heat flow scenarios cause a 3–6.5 m.y. difference in the relative timing of hydrocarbon generation across the basin. Structural events in the basin associated with convergent margin tectonics act as the main control on the timing of generation. Modeling results show transformation of kerogen to hydrocarbons began between early and late Miocene for both source rocks depending on the structural Previous HitregimeTop in the basin. The structural control on source rock maturation highlights the need for robust palinspastic reconstructions in addition to paleothermometric data to evaluate the petroleum prospectivity of convergent margin basins.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].