About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

DOI: 10.1306/09181817366

Insights into deep, onshore Gulf of Mexico Wilcox Previous HitsandstoneNext Hit pore networks and Previous HitreservoirNext Hit quality through the integration of petrographic, Previous HitporosityNext Hit and permeability, and mercury injection capillary pressure analyses

Robert G. Loucks,1 and Shirley P. Dutton2

1Bureau of Economic Geology, The University of Texas at Austin, Austin, Texas; [email protected]
2Bureau of Economic Geology, The University of Texas at Austin, Austin, Texas; [email protected]

ABSTRACT

In the Paleocene to Eocene Wilcox Group in the northern Gulf of Mexico, exploration targets are reaching into deep to ultradeep burial depths. At these great depths, Previous HitreservoirNext Hit quality (Previous HitporosityNext Hit and permeability) becomes an important risk factor in determining the chance of encountering an economic Previous HitreservoirNext Hit. Major controls on Previous HitreservoirNext Hit quality are pore types and abundances, pore-throat sizes, and pore network composition. These factors can be analyzed by integrating petrographic, core plug Previous HitporosityNext Hit and permeability, and mercury injection capillary pressure (MICP) analyses. The Wilcox sandstones are mostly lithic arkoses and feldspathic litharenites that contain primary interparticle pores, secondary dissolution pores, and micropores. However, these pore types evolve with depth and temperature. As temperature increases, the relative abundance of primary interparticle pores decreases, whereas the relative abundance of secondary dissolution pores and nano- to micropores increases. Associated with this evolution of pore networks with increasing temperature, there is a decrease in Previous HitreservoirNext Hit quality. This decrease in Previous HitreservoirNext Hit quality is caused by a transition to finer pore-throat sizes that correspond to changes in pore types. Petrographic analysis provides information on pore types, core plug Previous HitporosityNext Hit and permeability analysis provides information on volume of pores and effectiveness of flow, and MICP analysis provides information on pore-throat radius distribution. Through forecasting the pore network in the target temperature zone, a realistic Previous HitporosityNext Hit versus permeability transform can be selected to estimate permeability from wire-line log Previous HitporosityTop.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].