About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

DOI: 10.1306/05021917345

Carbonate rocks: Matrix permeability estimation

Alejandro Cardona,1 and J. Carlos Santamarina2

1Energy Resources and Petroleum Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; [email protected]
2Energy Resources and Petroleum Engineering, KAUST, Thuwal, Saudi Arabia; [email protected]

ABSTRACT

Carbonate rocks store half of the world’s proven oil reserves. Genesis and postdepositional diagenetic processes define the porous network topology and the matrix permeability. This study compiles a database of porosity, specific surface, mercury porosimetry, and permeability values extracted from published sources and complements the database through a focused experimental study. Specific surface and porosity combine to estimate the pore size (Dsur). Permeability versus Dsur data cluster along a single trend with a slope of 2 in a log–log scale, which is in agreement with the Kozeny–Carman model. Discordant data points correspond to samples with dual porosity or broad pore-size distributions with long tails, where flow channels along larger interconnected pores. Indeed, the detailed analysis of all the porosimetry data in the database shows that permeability correlates best with the pore size D80, that is, the 80th percentile in pore-size distributions. Once again, the best fit is a power function in terms of (D80)2, analogous to Kozeny–Carman. The prediction uncertainty using D80 is one order of magnitude and has the same degree of uncertainty as more complex models and analyses. This observation suggests an irreducible uncertainty of one order of magnitude in permeability estimation from index properties such as porosity, mercury porosimetry, and specific surface probably resulting from specimen preparation effects, inherent physical differences in permeation versus invasion, and difficulties in data interpretation. These estimates of permeability are most valuable when specimens are limited to small sizes, such as cuttings.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].

<