About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
AAPG Bulletin, V.
DOI: 10.1306/05272120087
Integrated geochemical approach to determine the source of methane in gas hydrate from Green Canyon Block 955 in the Gulf of Mexico
Myles T. Moore,1 Stephen C. Phillips,2 Ann E. Cook,3 and Thomas H. Darrah4
1US Geological Survey, Ohio-Kentucky-Indiana Water Science Center, Indianapolis, Indiana; School of Earth Sciences, The Ohio State University, Columbus, Ohio; [email protected]
2Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas; present address: US Geological Survey, Woods Hole, Massachusetts; [email protected]
3Divisions of Solid Earth Dynamics and Water, Climate, and the Environment, School of Earth Sciences, The Ohio State University, Columbus, Ohio; [email protected]
4Global Water Institute, The Ohio State University, Columbus, Ohio; School of Earth Sciences, The Ohio State University, Columbus, Ohio; [email protected]
ABSTRACT
Massive volumes of gas are sequestered within gas hydrate in subsurface marine sediments in the Gulf of Mexico. Methane associated with gas hydrate is a potentially important economic resource and a significant reservoir of carbon within the global carbon cycle. Nevertheless, uncertainties remain about the genetic source (e.g., microbial, thermogenic) and possible migration history of natural gas incorporated into hydrate. Previous studies have primarily used the hydrocarbon molecular (CH4/C2H6+) and isotopic (δ13C-CH4, δ2H-CH4) compositions of natural gas to address these uncertainties. However, hydrocarbon tracers are altered by mixing, oxidation, secondary methanogenesis, or fluid migration, which presents challenges when deciphering the mechanisms responsible for methane formation and accumulation. To evaluate the genetic source of natural gases from Green Canyon Block 955 (GC 955), east of the Sigsbee escarpment, we collected and analyzed samples from the first pressurized hydrate-bearing sediment cores collected from a coarse-grained hydrate reservoir in the Gulf of Mexico. Gas samples were analyzed for hydrocarbon gas (C1–C5), major gas (e.g., N2, CO2), and noble gas (He-Xe) abundance and isotopic (e.g., δ13C-CH4, δ2H-CH4, δ13C-CO2, δ15N-N2, 3He/4He, 4He/20Ne) compositions. We determined that natural gas in hydrates from this location are predominantly of primary microbial origin (conservatively at least 76%) and are formed by the hydrogenotrophic (CO2 reduction) methanogenesis pathway. We also note increased thermogenic proportions (∼6%) in a hydrate-bearing layer below the main hydrate-bearing interval (separated by a 5-m water-bearing layer). Our results suggest that microbial methane may be abundant below the base of gas hydrate stability at GC 955.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].