About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 106, No. 5 (May 2022), P. 1071-1100.

Copyright ©2022. The American Association of Petroleum Geologists. All rights reserved.

DOI: 10.1306/08102121001

Permeability of methane hydrate-bearing sandy silts in the deep-water Gulf of Mexico (Green Canyon Block 955)

Yi Fang,1 Peter B. Flemings,2 Hugh Daigle,3 Stephen C. Phillips,4 and Josh O’Connell5

1Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas; present address: Department of Geology and Geological Engineering, South Dakota School of Mines and Technology; [email protected]
2Institute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas; [email protected]
3Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Texas; [email protected]
4US Geological Survey (USGS), Woods Hole, Massachusetts; Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas; [email protected]
5Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas; [email protected]

ABSTRACT

Permeability is one of the most crucial properties governing fluid flow in methane hydrate reservoirs. This paper presents a comprehensive permeability analysis of hydrate-bearing sandy silt pressure-cored from Green Canyon Block 955 (GC 955) in the deep-water Gulf of Mexico. We developed an experimental protocol to systematically characterize the transport and petrophysical properties in pressure cores. The in situ effective permeability ranges from 0.1 md (1.0 × 10−16 m2) to 2.4 md (2.4 × 10−15 m2) in these natural sandy silts cores with hydrate occupying 83%–93% of the pore space. When hydrate dissociates from these cores, the measured intrinsic permeability (k0) is 0.3 md (3.0 × 10−16 m2) to 9.3 md (9.3 × 10−15 m2); these results are affected by fines migration during hydrate dissociation. We analyzed samples reconstituted from these sandy silts and found k0 to range from ∼12 md (∼1.2 × 10−14 m2) to ∼41 md (∼4.1 × 10−14 m2). The water relative permeabilities (krw) of GC 955 pressure cores are large relative to other natural pressure cores from offshore Japan, offshore India, and onshore Alaska. These krw values are also higher than predicted by current conceptual relative permeability models where hydrate fills the pores or coats the grains of the sediments. This fundamental conundrum requires further study. Our work provides essential parameters to reservoir simulation models seeking to predict hydrate formation in geological systems, evaluate the gas production potential, and explore the best way to produce this energy resource in sandy silt reservoirs.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].